
The PPL(G) Syllabus

2009 Edition

Revision A 1/6/2009

Introduction

The PPL(G) syllabus (2009 edition) is a statement of the scope of the training required for a student to apply for a licence to fly Gyros in the UK.

The syllabus is split into 2 parts:

- Part 1 contains the flying elements of the training
- Part 2 contains the theoretical elements of the training.

The purpose of this syllabus is to provide a consistent standard of training for all student pilots throughout the UK and to give a clear method of recording progress.

This syllabus replaces the 1998 revision. The scope of the training has not changed significantly, what this edition provides is a greater clarity into the standards expected of a student at each stage of the training. It also reflects the change in legislation that a student must complete a 2-seat training course, to the standard of being able to fly solo, before being allowed to fly in a single seat aircraft.

Each part of this syllabus has been subdivided into elements. These elements are designed to flow in a logical order and are at a suitable level of details to make it easy for a student and an instructor to record progress.

The CAA will issue the student with a licence to fly a Gyro and carry passengers when they are satisfied that:

- the student has completed all the elements of the syllabus satisfactorily
- the student has flown at least the minimum number of hours required under the supervision of a CAA approved instructor.

Part 1 - The flying elements

There are 8 sections in the flying syllabus:

- 1: Basic Flying
- 2: Upper Air Work
- 3: Rotor management, take off and landing
- 4: Emergencies
- 5: Solo Flying
- 6: Advanced Flying
- 7: Cross Country Flying
- 8: General Flying Test

In general a student would be proficient in a section before starting training in the next section.

Each flying section is subdivided into **exercises**. An exercise is a `bite size` step in the training which will be covered in one or more training flights.

For example, the section on Upper Airwork contains an exercise called:

Ex 2b: Increase and decrease speed at constant altitude

There is no prescribed order for exercises, the order may vary depending upon the weather, the instructor's preference and the student's learning ability. Although sections 6 and 7 appear in the syllabus after solo flying, it is likely that many of these exercises will be taught before solo flying and then revisited after solo flying as the student will have a greater capacity for concentrating on them having consolidated a few hours solo.

Each exercise has a **brief** which explains some of the vital content of the exercise. The details of the brief will be explained by your instructor.

Each exercise also has one or more **Specific Flying Objectives**. A specific flying objective is a skill that a pilot must be able to perform competently and consistently. This syllabus contains a standard for that skill level.

For example, the exercise above has a specific flying objective:

From straight and level flight at a constant speed in trim, increase speed by a suitable amount (say 20mph) and re-trim, maintaining balance and constant altitude at all times.

The flying elements of the syllabus are examined in a **General Flying Test** (GFT) by a CAA approved examiner. The general flying test consists of the student being able to demonstrate competency of a number of the specific flying objectives already performed during the course. It also involves a demonstration of the safe operation of the Gyro on the ground and the safety of passengers.

4

Part 2 - The theoretical elements

There are 6 theoretical sections to the syllabus:

- Airfield Procedures
- Aviation Law, Flight Rules and Procedures
- Gyroplane Technical
- Meteorology
- Human Performance and Limitations
- Navigation

With the exception of Airfield Procedures, the theoretical elements of the syllabus are examined by multiple choice paper.

Airfield Procedures has no examination as the content will be specific to your airfield. Your instructor must be satisfied that you understand and comply with these procedures at all times. You must seek out airfield procedures for any other airfield that you fly from.

There will be an oral exam with questions relating to the specific type of Gyro that you use for your General Flying Test. This is usually done immediately before the GFT.

In addition a student should sit the standard Radio Telephony Exam in order to legally use the radio in flight.

Minimum Flying Hours

A student must complete a minimum of 40 hours of instruction of which at least 10 hours must be flown solo and at least 3 hours must be solo flown outside the locality of the home airfield and training area (cross country).

An existing NPPL or PPL(A) holder (or above) will be granted a credit of up to 10 hours towards the training. An existing PPL(H) holder (or above) will be granted a credit of up to 20 hours towards the training. In both these cases the minimum solo hours and solo navigation hours given above must still be done.

Single Seat Training

A student must be suitably trained on a dual seat Gyro before attempting flying exercises in a single seat Gyro, however there are certain non-flying exercises eg Rotor Start/Stop that can be trained in parallel with dual seat training. Training on a single seat Gyro may be interspersed with dual seat training at the discretion of the instructor. A student must be at solo standard in a dual seat machine before flying in a single seat machine.

Completion of Theory Exams

Air Law must be completed before flying solo.

Navigation, Meteorology and Human Performance and Limitations must be completed before flying solo cross country.

All exams must be taken within 12 months of the application for a licence.

LASORS

6

The information given above is correct at the date of this publication however it may be superseded by the CAA at any time. Please refer to the CAA publication "LASORS" for the latest licencing requirements.

Recording of Student Progress

An instructor will maintain his own training notes relating to the exercises performed and standards achieved during training with a student however it is vital that both an instructor and the student have confidence that what has been **taught** during the training has actually been learned **and retained** by the student.

A student must therefore be able to perform every Specific Flying Objective in this syllabus competently before applying for the General Flying Test. There are 3 stages to learning that should be noted in this syllabus to record progress.

- Firstly, when the student has been initially **taught** to fly an objective, the **instructor** should sign and date when it has been taught.
- Secondly, on a different flight, when the student has **consolidated** the objective and is confident that he/she can demonstrate consistently the objective to the standard set out in this syllabus, the **student** should sign and date the objective.
- Thirdly, when the instructor is satisfied that the student has **proved** him/herself demonstrating the exercise on demand to the required standard, the **instructor** should sign and date the objective.

At the end of this syllabus there is a certificate of completion that both the student and the instructor should sign to confirm that student has been able to demonstrate all the exercises competently and consistently during the training. This will be checked by the examiner prior to the General Flying Test.

Pilot's Operating Handbook, Aviation Law and Good Practice

Nothing in this document overrides the requirement to operate the aircraft within the limitations of the Pilots Operating Handbook (POH), the aircraft's Permit to Fly, Aviation Law and good aviation practice.

The PPL(G) Syllabus 2009 Edition

Part 1 - The Flying Elements

This document may be printed by an instructor for the instructors use or by a student for their own personal use. It must not be printed and sold. Printed copies are available from the British Rotorcraft Association.

The PPL(G) Syllabus 2009 Edition

Section 1: Basic Flying

- Ex 1a: Air Experience Flight
- Ex 1b: Effects of controls
- Ex 1c: Startup, Taxi and Shutdown
- Ex 1d: Basic Flying Consolidation

Section 2: Upper Air Work

- Ex 2a: Fly a straight track at constant altitude
- Ex 2b: Increase and decrease speed at constant altitude
- Ex 2c: Medium turns at constant altitude
- Ex 2d: Climb and descend straight
- Ex 2e: Climb and descend whilst turning
- Ex 2f: Fly the circuit pattern
- Ex 2g: Upper Air Work Consolidation

Section 3: Rotor Management, take offs and landings

- Ex 3a: Rotor management
- Ex 3b: Take-offs
- Ex 3c: Landings
- Ex 3d: Hops
- Ex 3e: Circuit Consolidation

Section 4: Emergencies

- Ex 4a: Engine failures to touchdown at the airfield
- Ex 4b: Engine failure in the circuit, unable to reach the airfield
- Ex 4c: Engine failure on take off
- Ex 4d: Emergencies
- Ex 4e: Recognising and recovery from unusual attitudes

Section 5: Solo Flying

- Ex 5a: Presolo check
- Ex 5b: First solo
- Ex 5c: Solo consolidation

Section 6: Advanced Flying

- Ex 6a: Advanced take offs
- Ex 6b: Advanced Landings
- Ex 6c: Slow Flight
- Ex 6d: Fast Flight

8

- Ex 6e: Zero airspeed descents
- Ex 6f: Advanced Turns
- Ex 6g: Low flying
- Ex 6h: Advanced Rotor Management

Section 7: Cross country flying

- Ex 7a: Join the circuit at unfamiliar airfields
- Ex 7b: Precautionary Field landings
- Ex 7c: Emergency field landing
- Ex 7d: Navigation
- Ex 7e: Qualifying Cross country

Section 8: General flying test

- Ex 8a: Pre-GFT check
- Ex 8b: General Flying Test

Section 1: Basic Flying

`Basic Flying` is an introduction to flying Gyros. It contains the necessary elementary skills to control a Gyro holding a steady height and a steady speed, in a relaxed and controlled manner.

The aim of this section is to be comfortable in the air and understand the flying controls, to control the Gyro on the ground and in the air.

There are 4 basic flight exercises:

Ex 1a: Air Experience Flight

To introduce and become accustomed to the Gyro, the sensation of flying and to sample the aspect of the ground from the air.

Ex 1b: Effects of controls

To be able to understand the basic requirements of safe flying and the elementary use of the controls in the air

Ex 1c: Startup, Taxi and Shutdown

To be able to safely start, taxi, prerotate and stop a Gyro and understand the use of the controls on the ground

Ex 1d: Basic Flying Consolidation

To be able to fly a Gyro at a steady height and speed, making gentle turns in a controlled manner, in balance and in trim

Ex 1a: Air Experience Flight

Objective

To introduce and become accustomed to the Gyro, the sensation of flying and to sample the aspect of the ground from the air.

Brief

- General understanding of a Gyro
- Safety Brief
- Operating the Gyro from the front seat (If applicable)
- No big movements of the stick

Specific Flying Objective	Completed
Instructor led flight with hands-on experience	
Fly in a Gyro with the instructor doing the flying to experience	
the sensation of Gyro flying. Have the opportunity to take the controls whilst in flight.	

Ex 1b: Effects of controls

Objective

To be able to understand the basic requirements of safe flying and the elementary use of the controls in the air

Brief

- Terminology:
 - o Roll, Pitch, Yaw
 - Fly by horizon
 - Altitude, Attitude, Airmanship
- Stick = Speed, Throttle(Power) = Height, Pedals = Balance
- Student/Instructor handover
- Clock code
- Understanding the instruments
- Visual Reference Points (especially side-by-side)

Specific Flying Objective	Completed
Seating position and control movement	Trained
Having a comfortable seating position, using a cushion where	Consolidated
necessary ensuring that all the controls can be reached without	
stretching. The correct way to move the controls, in particular	Proved
the correct grip of the stick.	
Instructor/Student handover	Trained
Understand and use the `I have control - You have control`	Consolidated
technique to ensure that there is no ambiguity who is flying the	Proved
Gyro.	Proved
Relaxed Flying	Trained
Demonstrate a sufficiently relaxed manner when flying and to be able to talk to and listen to the instructor in flight.	Consolidated
	Proved
Reference to the instruments	Trained
Understand how to interpret the instruments in the Gyro. Get	Consolidated
the balance correct between flying with reference to the	
horizon and scanning the instruments.	Proved
Maintain a good lookout	Trained
Fly whilst maintaining a good lookout, spotting other aircraft	Consolidated
and be able to use the `clock code` to pinpoint other aircraft.	
The importance of not assuming the instructor has seen	Proved
everything.	

Ex 1c: Startup, Taxi and Shutdown

Objective

To be able to safely start, taxi, prerotate and stop a Gyro and understand the use of the controls on the ground

Brief

- Positioning of the Gyro before start
- Blade Flap
- Prestart Checklist
- Startup Checklist
- Use of controls when taxying
- Runway Checklist

Specific Flying Objective	Completed
Prestart procedure	Trained
Correct positioning of the Gyro prior to start with consideration	Consolidated
to other people and aircraft in the vicinity. Check essential	
elements before starting the engine.	Proved
Startup procedure	Trained
Start the engine of the Gyro with due consideration for safety	Consolidated
and check for satisfactory performance of an engine before	
flying. Particular care to be taken to avoid risk to bystanders.	Proved
Taxi procedure (rotors stationary)	Trained
Move the Gyro on the ground in a controlled manner, turning	Consolidated
left and right, keeping an appropriate speed with care and	
attention to obstacles on the ground. Be able to stop in an	Proved
emergency. Be able to shut down the engine in an emergency.	
Prerotate procedure	Trained
Perform appropriate checks before take-off and prerotate in a	Consolidated
safe and controlled manner, handing over control to the	
instructor for take-off.	Proved
Rotor brake application procedure	Trained
Understand how to manoeuvre a Gyro on the ground after	Consolidated
landing and apply the rotor brake (if fitted) to stop the rotors. Align the rotors fore and aft if possible when taxying.	Proved
Shut down and park procedure	Trained
Correctly manoeuvre a Gyro back to the apron and park with	
due consideration to people and other traffic. Correct shutting	Consolidated
down of the engine and post flight procedures.	Proved

Ex 1d: Basic Flying Consolidation

Objective

To be able to fly a Gyro at a steady height and speed, making gentle turns in a controlled manner, in balance and in trim.

Brief

- Understanding stick back pressure on turning
- Understanding Balance
- Understanding Trim
- Understanding power and pitch relationship

Specific Flying Objective	Completed
Hold a steady speed	Trained
Fly consistently at a steady speed suitable for general training.	Consolidated
Speed should be held steady +/- 10mph. Pitch adjusted	Proved
without over-controlling.	
Hold a steady height	Trained
Fly consistently at a constant altitude suitable for general training. Altitude should be held steady +/- 100 ft. Power	Consolidated
adjusted without over-controlling.	Proved
Fly in Balance	Trained
Fly consistently with the airflow in balance around the Gyro	Consolidated
including gentle turns. Understand the factors that influence	Proved
balance. Balance should be adjusted without over-controlling.	Provea
Fly in Trim	Trained
Where in-flight adjustable trim is fitted, trim to be adjusted for	Consolidated
near `hands-off` flight consistently and whenever speed is altered. Trim to be adjusted in the correct direction and for an	Proved
appropriate duration without over-controlling.	
Airmanship	Trained
Understand `Airmanship`, maintaining a good lookout for other	Consolidated
traffic, being able to have a general sense of direction and	
recognise local features to navigate back to the airfield. Have	Proved
due consideration for other people and traffic whilst in the air	
and whilst on the ground.	

Section 2: Upper Air Work

`Upper Airwork` adds finesse to flying Gyros whilst in the air. This includes changing speed, changing height and changing direction in a controlled manner.

The aim of this section is to be able to fly a Gyro accurately whilst in the air, it excludes being able to take-off and land.

Ex 2a: Fly a straight track at constant altitude

To be able to fly in a straight line over the ground irrespective of where the wind is coming from and remain at a constant altitude.

Ex 2b: Increase and decrease speed at constant altitude

To be able to change speed significantly whilst remaining at a constant altitude.

Ex 2c: Medium turns at constant altitude

To be able to change direction significantly at a constant speed whilst remaining at a constant altitude.

Ex 2d: Climb and descend - straight

To be able to change height significantly at a suitable speed and constant direction.

Ex 2e: Climb and descend whilst turning

To be able to change height significantly at a constant speed whilst changing direction.

Ex 2f: Fly the circuit pattern

To be able to fly an accurate circuit pattern for the airfield.

Ex 2g: Upper Air Work Consolidation

To be able to perform all the upper airwork exercises competently and confidently.

Ex 2a: Fly a straight track at constant altitude

Objective

To be able to fly in a straight line over the ground irrespective of where the wind is coming from and remain at a constant altitude.

Brief

- Terminology:
 - Headwind/Into Wind
 - Tailwind/Downwind
 - \circ Crosswind
 - Lift/Sink
 - Drift/Crabbing
 - Track/Heading
 - Airspeed/Groundspeed
- Picking ground track objects
- Wind signals

Specific Flying Objectives

16

Specific Flying Objective	Completed
Maintain a track in a headwind at constant altitude	Trained
Fly in a straight line over the ground directly into wind, in	Consolidated
balance and in trim whilst maintaining a height +/- 100ft, a	
speed +/- 10mph. Recognising `into wind` from ground speed	Proved
and other wind signals.	
Maintain a track in a tailwind at constant altitude	Trained
Fly in a straight line over the ground downwind, in balance and	Consolidated
in trim whilst maintaining a height +/- 100ft, a speed +/-	
10mph. Recognising `tail wind` from ground speed and other	Proved
wind signals.	
Maintain a track in a crosswind from the right at constant	Trained
altitude	Consolidated
Fly in a straight line over the ground with a medium strength	
(say 15mph) wind coming from the right. Maintain a suitable	Proved
crab angle to compensate for drift.	
Maintain a track in a crosswind from the left at constant altitude	Trained
Fly in a straight line over the ground with a medium strength	Consolidated
(say 15mph) wind coming from the left. Maintain a suitable	
crab angle to compensate for drift.	Proved

Ex 2b: Increase and decrease speed at constant altitude

Objective

To be able to change speed significantly whilst remaining at a constant altitude.

Brief

- Relationship between power and pitch
- Simultaneous adjustment
- Reminder of balance changes with power and airspeed
- Remember to re-trim

Specific Flying Objective	Completed
Significant increase in speed at constant altitude	Trained
From straight and level flight at a constant speed in trim,	Consolidated
increase speed by a suitable amount (say 20mph) and re-trim,	
maintaining balance and constant altitude at all times.	Proved
Significant decrease in speed at constant altitude	Trained
From straight and level flight at a constant speed in trim,	Consolidated
decrease speed by a suitable amount (say 20mph) and re-trim,	Consolidated
maintaining balance and constant altitude at all times.	Proved

Ex 2c: Medium turns at constant altitude

Objective

To be able to change direction significantly at a constant speed whilst remaining at a constant altitude.

Brief

- Rotor thrust direction
- Loss of either speed or height
- Importance of lookout
- Don't look at the compass whilst turning

Specific Flying Objective	Completed
Change heading by 360 deg to the right at constant altitude	Trained
From straight and level flight, change direction to the right keeping a constant bank angle and in balance. Maintain level	Consolidated
flight +/- 100ft. During the turn speed to be constant +/-	Proved
10mph. Maintain a good lookout at all times, especially before	
the turn commences. Note speed in turn generally slower than	
speed at entry.	
Change heading by 360 deg to the left at constant altitude	Trained
From straight and level flight, change direction to the left keeping a constant bank angle and in balance. Maintain level	Consolidated
flight +/- 100ft. During the turn speed to be constant +/-	Proved
10mph. Maintain a good lookout at all times, especially before	
the turn commences. Note speed in turn generally slower than	
speed at entry.	

Ex 2d: Climb and descend - straight

Objective

To be able to change height significantly at a suitable speed and constant direction.

Brief

- Relationship between power and pitch
- Simultaneous adjustment
- Importance of lookout

Specific Flying Objective	Completed
Full power climb and level out. Constant speed	Trained
From straight and level flight climb on full power to a given altitude at least 300ft above the starting altitude maintaining a	Consolidated
constant speed and direction and maintaining balance at all	Proved
times. Fly at a constant altitude after levelling out.	
Low power descend and level out. Constant speed	Trained
From straight and level flight descend on idle power to a given altitude at least 300ft below the starting altitude maintaining a	Consolidated
constant speed and direction and maintaining balance at all	Proved
times. Fly at a constant altitude after levelling out.	
Full power climb into a low power descent	Trained
From straight and level flight climb on full power to a given altitude at least 300ft above the starting altitude maintaining a	Consolidated
constant speed and direction and maintaining balance at all	Proved
times. As soon as the given height is reached, immediately	
descend on idle power levelling out at the original altitude.	
Low power descent into a full power climb	Trained
From straight and level flight descend on low power to a given	Consolidated
altitude at least 300ft below the starting altitude maintaining a constant speed and direction and maintaining balance at all	Proved
times. As soon as the given height is reached, immediately climb on full power levelling out at the original altitude.	

Ex 2e: Climb and descend whilst turning

Objective

To be able to change height significantly at a constant speed whilst changing direction.

Brief

• Increase in drag in the turn

Specific Flying Objective	Completed
Climbing, initiating a 360 turn in the climb and then straight	Trained
From straight and level flight, climb on full power on a constant	Consolidated
heading, after 100ft of climb initiate a 360 deg turn to the left	
whilst maintaining a (reduced) climb. After 360 deg continue	Proved
climbing on the original heading. Maintain speed and balance	
at all times. Repeat the exercise turning to the right.	
Descending, initiating a 360 turn in the descent and then straight	Trained
From straight and level flight, descend on low power on a	Consolidated
constant heading, after 100ft of descent initiate a 360 deg turn	
to the left whilst maintaining an increased descent. After 360	Proved
deg continue descending on the original heading. Maintain	
speed and balance at all times. Repeat the exercise turning to	
the right.	
Level 360 turn and then climb during the turn to level out in the	Trained
turn	Consolidated
From a constant bank angle turn to the left at a constant speed	Proved
and altitude, climb on full power whilst maintaining speed and	Proved
bank angle. After 360 deg continue turning at level altitude.	
Maintain balance at all times. Repeat the exercise whilst	
turning to the right.	
Level 360 turn and then descend during the turn to level out in	Trained
the turn	Consolidated
From a constant bank angle turn to the left at a constant speed	Proved
and altitude, descend on low power whilst maintaining speed	Troved
and bank angle. After 360 deg continue turning at level	
altitude. Maintain balance at all times. Repeat the exercise	
whilst turning to the right.	

Ex 2f: Fly the circuit pattern

Objective

To be able to fly an accurate circuit pattern for the airfield.

Brief

- Terminology:
 - Climbout, Crosswind, Downwind, Base Leg, Final Approach, Deadside, Overhead
- Downwind checks LIFES (or equivalent)
 - o Location, Lookout, Landing Lights
 - o Instruments (Height, Speed)
 - Fuel Sufficient, Fuel Pump On
 - Engine Temperatures and Pressures
 - Security, Harness and Helmets
- Check "Clear Final"
- Go-around

Specific Flying Objective	Completed
Circuit pattern, left hand	Trained
Fly a left hand circuit pattern using full power on climb out, levelling out to circuit height +/- 50ft flying at a constant speed	Consolidated
+/- 5mph, descending on the approach at near idle power,	Proved
using an initial descent point aiming at the numbers at the start	
of runway. Maintain balance at all times. Perform Downwind	
checks and check Final. Initiate a go-around at an appropriate	
height, alternatively the instructor may perform the landings	
and the take-offs.	
Circuit pattern, right hand	Trained
Fly a right hand circuit pattern using full power on climb out, levelling out to circuit height +/- 50ft flying at a constant speed	Consolidated
+/- 5mph, descending on the approach at near idle power,	Proved
using an initial descent point aiming at the numbers at the start	
of runway. Maintain balance at all times. Perform Downwind	
checks and check Final. Initiate a go-around at an appropriate	
height, alternatively the instructor may perform the landings and the take-offs.	

Ex 2g: Upper Air Work Consolidation

Objective

To be able to perform all the upper airwork exercises competently and confidently.

Brief

- LIFE checks (or equivalent)
 - Location, Lookout
 - Instruments (Height, Speed)
 - o Fuel
 - Engine Temperatures and Pressures

Specific Flying Objective	Completed
Perform LIFE checks (or equivalent) at regular intervals whilst	Trained
flying	Consolidated
Whilst flying away from the airfield in the cruise perform LIFE checks (or equivalent) at regular intervals (say every 10 mins)	Proved
to ensure safe flying.	
Join the circuit at the home airfield	Trained
Understand the different ways to join the circuit at your home airfield(s). Fly each of the appropriate joins depending upon	Consolidated
circuit traffic and the direction of joining.	Proved

Section 3: Rotor Management, take offs and landings

`Rotor Management` is about understanding how to control rotors safely on the ground, especially whilst they are speeding up before take off and slowing down after landing.

The aim of this section is to be able to take off and land a Gyro safely.

Ex 3a: Rotor management

To be able to control the rotors during their speed buildup and slowdown in a controlled manner whilst on the ground.

Ex 3b: Take-offs

To be able to take off from the runway in a safe and controlled manner.

Ex 3c: Landings

To be able to land on the runway in a safe and controlled manner.

Ex 3d: Hops

To be able to take off from the runway, fly level a few feet above the runway and land in a safe and controlled manner.

Ex 3e: Circuit Consolidation

To be able to fly an accurate circuit pattern, complete with take off and landings.

Ex 3a: Rotor management

Objective

To be able to control the rotors during their speed buildup and slowdown in a controlled manner whilst on the ground.

Brief

- Blade Sailing
- Retreating Blade Stall
- Rotor Thrust/Rotor Drag
- Stick position when on the ground

Specific Flying Objectives

Specific Flying Objective	Completed
Increasing power safely, with due attention to rotor speed,	Trained
anticipating the front wheel lifting	Consolidated
From a position at the start of the runway, with the rotors	
prerotated to the manufacturers recommended RPM, apply	Proved
power and move forward, keeping the Gyro in a straight line	
and build rotor speed, with due care and attention to avoiding	
blade sailing. Be able to consistently anticipate when the	
nosewheel is about to lift.	
Wheel Balance	Trained
Move down the runway with the main wheels touching the	Consolidated
ground at all times, with the nosewheel lifted a few inches	
above the ground. Keep the Gyro in full control at all times,	Proved
without lifting off or over-controlling.	
Taxy with stick forward including turning at each end of the	Trained
runway	Consolidated
With the rotors turning at a suitable speed, taxy in both	
directions on the runway turning 180 deg at each end with the	Proved
stick fully forward and in a position suitable for the current	
wind speed and direction.	
Prerotating whilst taxying with stick forward	Trained
Whilst taxying with the rotors turning, engage the prerotator	Consolidated
whilst moving forward to prevent blade sailing, ensuring that	
the Gyro remains in a straight line and at a controlled speed,	Proved
anticipating the changes in torque.	
Taxy with stick backward, maintaining rotor speed	Trained
In suitable wind conditions, backtrack the length of the runway	Consolidated
with the still fully back to maintain a safe rotor speed, with due	Proved
care and attention to the avoidance of blade sailing.	rroveu

This document may be printed by an instructor for the instructors use or by a student for their own personal use. It must not be printed and sold. Printed copies are available from the British Rotorcraft Association.

Ex 3b: Take-offs

Objective

To be able to take off from the runway in a safe and controlled manner.

Brief

- Alignment
- Prerotate
- Rotorspeed Build up
- Lift Off
- Airspeed Buildup
- Climb out

Specific Flying Objective	Completed
Take-offs with headwind or light crosswind	Trained
With a headwind or light crosswind, take off in a straight line keeping the Gyro controlled at all times, without over-	Consolidated
controlling.	Proved
Take-offs with medium crosswind from the right	Trained
With medium wind conditions (say 10-15mph), crosswind from the right, take off keeping the Gyro in a straight line down the	Consolidated
runway.	Proved
Take-offs with medium crosswind from the left	Trained
With medium wind conditions (say 10-15mph), crosswind from	Consolidated
the left, take off keeping the Gyro in a straight line down the runway.	Proved

Ex 3c: Landings

Objective

To be able to land on the runway in a safe and controlled manner.

Brief

• Initial Descent Point, Approach, Roundout, Float & Flare

Specific Flying Objective	Completed
Landings with headwind or light crosswind	Trained
With a headwind or light crosswind, land in straight line. The	Consolidated
touchdown to be on the main wheels with a very small rate of	
descent at the time of touchdown. The Gyro must be pointing	Proved
accurately in the direction of travel. After touchdown use the	
rotor drag to bring the Gyro to a complete halt in the shortest	
possible time.	
Landings with medium crosswind from the right	Trained
With medium wind conditions (say 10-15mph) crosswind from	Consolidated
the right, land in straight line avoiding any tendency to drift.	
The touchdown to be on the main wheels with a very small rate	Proved
of descent at the time of touchdown. The Gyro must be	
pointing accurately in the direction of travel. After touchdown	
use the rotor drag to bring the Gyro to a complete halt in the	
shortest possible time.	
Landings with medium crosswind from the left	Trained
With medium wind conditions (say 10-15mph) crosswind from	Consolidated
the left, land in straight line avoiding any tendency to drift. The	
touchdown to be on the main wheels with a very small rate of	Proved
descent at the time of touchdown. The Gyro must be pointing	
accurately in the direction of travel. After touchdown use the	
rotor drag to bring the Gyro to a complete halt in the shortest	
possible time.	
Landings into wind, in a crosswind	Trained
With medium wind conditions (say 10-15mph) crosswind, land	Consolidated
directly into wind at an angle up to 30 deg on a runway. The	Proved
touchdown to be on the main wheels with a very small rate of	Proved
descent at the time of touchdown. The Gyro must be pointing	
accurately in the direction of travel. After touchdown use the	
rotor drag to bring the Gyro to a complete halt in the shortest	
possible time.	

Ex 3d: Hops

Objective

To be able to take off from the runway, fly level a few feet above the runway and land in a safe and controlled manner.

Brief

- Power reduction when airborne
- Stick=Drift
- Direction=Pedals
- Fly to 2ft

Specific Flying Objective	Completed
Low hops	Trained
From a stationary position at the start of a runway, take off and fly level a few feet above the ground at a steady speed close to	Consolidated
the minimum drag speed for the Gyro, keeping straight along	Proved
the length of the runway. Land the Gyro at the end of the	
runway.	
High hops	Trained
From a stationary position at the start of a runway, take off and fly at about 100ft above the ground at a steady speed close to	Consolidated
the minimum drag speed for the Gyro, keeping straight along	Proved
the length of the runway. Land the Gyro at the end of the	
runway.	

Ex 3e: Circuit Consolidation

Objective

To be able to fly an accurate circuit pattern, complete with take off and landings.

Brief

- Recap of takeoff and landing
- Downwind checks eg. LIFES
 - Lookout/Location/Lights
 - Instruments (Height/Speed)
 - Fuel, Fuel Pump
 - o Engine Temperatures & Pressures
 - Security Harness/Helmet
- Any appropriate downwind checks can be used

Specific Flying Objective	Completed
Landing without power close to a selected point	Trained
Take off, fly an accurate circuit and land with idle power,	Consolidated
coming to a full stop without applying the wheel brake. The	
landing must be smooth with no tendency to drift.	Proved
Landings with power close to a selected point	Trained
Take off, fly an accurate circuit and land with low power,	Consolidated
coming to a full stop without applying the wheel brake. The	
landing must be smooth with no tendency to drift.	Proved
Recognising and correct action of a go-around	Trained
Take off, fly an accurate circuit and continue as if to land.	Consolidated
During the final stages of the float apply power to go-around	
without touching the runway. The go-around must be smooth	Proved
with no significant changes in direction, over-controlling or loss	
of balance.	

Section 4: Emergencies

`Emergencies` is dealing with unexpected events including safe operation of a Gyro and landing in the event of an engine failure.

The aim of this section is to be instinctive about coping with an emergency situation.

Ex 4a: Engine failures to touchdown at the airfield

To be able to land on the runway in the event of an engine failure close to the runway.

Ex 4b: Engine failure in the circuit, unable to reach the airfield

To be able to land in a safe area in the event of an engine failure when in the circuit but not close to the runway.

Ex 4c: Engine failure on take off

To be able to land ahead on the runway in the event of an engine failure on take off.

Ex 4d: Emergencies

To be able to take corrective action in the event of emergency situations.

Ex 4e: Recognising and recovery from unusual attitudes

To be able to recognise unusual attitudes and safely recover from them.

Ex 4a: Engine failures to touchdown at the airfield

Objective

30

To be able to land on the runway in the event of an engine failure close to the runway.

Brief

- Simply a standard glide approach
- Importance of suitable speed

Specific Flying Objective	Completed
Engine failure landings on approach	Trained
Perform a normal circuit. At a point on final approach where	Consolidated
you can safely reach the runway, chop the power to idle and	
land straight ahead. Apply power only to go-around if	Proved
necessary.	
Engine failure landings on approach - S turns	Trained
Perform a normal circuit, continue on final approach past the	Consolidated
normal initial descent point. Chop the power to idle, perform	
S-turns and land at the usual touchdown point on the runway.	Proved
Engine failure landings on approach - speed reduction	Trained
Perform a normal circuit, continue on final approach past the	Consolidated
normal initial descent point. Chop the power to idle, reduce	
airspeed to a minimum suitable airspeed for the Gyro that still	Proved
gives rudder authority and descend until the normal glide	
approach is re-established or the minimum safe height.	
Increase speed to a safe landing speed and touchdown on the	
runway.	
Engine failure landings on downwind leg	Trained
Perform a normal circuit (or a tight circuit if suitable). At a	Consolidated
point past the midpoint on the downwind leg, chop the power.	
Perform a 180deg turn and land.	Proved
Engine failure landings from overhead the airfield	Trained
Fly overhead the airfield at a height roughly equal to double	Consolidated
the circuit height (as a guide). Chop the power and position	
the Gyro directly to a position suitable for landing on the	Proved
runway. Perform an idle power landing. Ensure that no other	
circuit traffic will be affected by this manoeuvre.	

Ex 4b: Engine failure in the circuit, unable to reach the airfield

Objective

To be able to land in a safe area in the event of an engine failure when in the circuit but not close to the runway.

Brief

- Always turn into wind
- Watch for wires and other traffic
- Go around at a suitable height

Specific Flying Objective	Completed
Engine failures on climb out	Trained
Perform a normal circuit, at a suitable point on the climb-out	Consolidated
(say at least 300ft) chop the power and approach for landing	
ahead. DO NOT ATTEMPT TO TURN BACK TO THE RUNWAY. Go	Proved
around at a suitable height.	
Engine failures on crosswind leg	Trained
Perform a normal circuit, at a suitable point on the crosswind	Consolidated
leg chop the power and approach for landing into wind. DO	Consonuated
NOT ATTEMPT TO TURN BACK TO THE RUNWAY. Go around at	Proved
a suitable height.	
Engine failures on downwind leg	Trained
Perform a normal circuit, at a suitable point before the	Consolidated
midpoint of the downwind leg chop the power and take	Consolidated
decisive action about where to land, If suitable for landing	Proved
then touchdown otherwise go-around at a suitable height.	

Ex 4c: Engine failure on take off

Objective

To be able to land ahead on the runway in the event of an engine failure on take off.

Brief

- Do not over-control
- Careful movement of stick forward

Specific Flying Objective	Completed
Engine failure during speed build up	Trained
Perform a normal take off, as the airspeed is increasing with	Consolidated
the Gyro flying level a few feet above the ground, chop the	
power and land ahead. The Gyro must not significantly go out	Proved
of balance or drift during the exercise.	
Engine failure during early climb out	Trained
Perform a normal take off, soon after the climb-out is started,	Consolidated
having achieved a suitable climb-out speed and safe height for	
the manouevre, chop the power and land ahead. If there is not	Proved
a suitable length of runway remaining - go-around at a suitable	
height.	

Ex 4d: Emergencies

Objective

To be able to take corrective action in the event of emergency situations.

Brief

- Trim Failure
- Throttle Cable Failure
- Fire

Specific Flying Objectives

Specific Flying Objective	Completed
Limited power flying and landing	Trained
Take off as if to fly a normal circuit, at about 200ft on the	Consolidated
climbout reduce power to about 3/4 of full power (simulating	
an engine cylinder failure). Take appropriate action to land	Proved
safely on the ground.	
Simulated throttle cable break (if appropriate)	Trained
Take off as if to fly a normal circuit, at about 200ft on the	Consolidated
climbout apply full power (possibly simulating a throttle cable	
break). Take appropriate action and land back on the runway.	Proved
You only have 2 power settings - full power or idle power.	
Simulated trim failure - full rear trim (if appropriate)	Trained
Take off as if to fly a normal circuit, at about 200ft on the	Consolidated
climbout apply full trim backwards. Continue to fly the circuit	
with this excessive back pressure and land normally. If there is	Proved
any doubt that a satisfactory landing can be achieved, go-	
around and land with a normal trim setting.	
Simulated trim failure - full forward trim (if appropriate)	Trained
Take off as if to fly a normal circuit, at about 200ft on the	Consolidated
climbout apply full forward trim. Continue to fly the circuit	
with this excessive forward pressure and land normally. If	Proved
there is any doubt that a satisfactory landing can be achieved,	
go-around and land with a normal trim setting.	
Simulated fire in the air	Trained
Take off as if to fly a normal circuit, or fly away from the	Consolidated
airfield. Simulate an engine fire and TALK THROUGH ONLY any	
actions to take. Repeat the exercise with an electrical fire.	Proved
Simulated fire on the ground	Trained
Whilst taxying, simulate an engine fire and TALK THROUGH	Consolidated
ONLY any actions to take. Repeat the exercise with an	
electrical fire.	Proved

This document may be printed by an instructor for the instructors use or by a student for their own personal use. It must not be printed and sold. Printed copies are available from the British Rotorcraft Association.

Ex 4e: Recognising and recovery from unusual attitudes

Objective

To be able to recognise unusual attitudes and safely recover from them.

Brief

- Remove the power
- Centre the stick
- Wait for the Gyro to settle

Specific Flying Objective	Completed
Recovery from rapid stick back movement	Trained
This exercise must only be done with an instructor. Fly straight	Consolidated
and level. Without adjusting power lower the nose to increase	
to a significant speed appropriate for the exercise and pull back	Proved
on the stick to climb in a nose high attitude. Recognise this	
unusual attitude and recover safely.	
Recovery from slow speed descending turn	Trained
This exercise must only be done with an instructor. Fly straight	Consolidated
and level. Without adjusting power gradually bring the stick	
back to reduce speed, apply some pedal and stick in the same	Proved
direction to enter a slow spiral dive. Recognise this unusual	
attitude and recover safely.	
Recovery from steep nose down attitude	Trained
This exercise must only be done with an instructor. Fly straight	Consolidated
and level, chop the power and reduce airspeed to almost zero.	Proved
Lower the nose to a steep nose down attitude and let the	Proveu
airspeed increase. Recognise this unusual attitude and recover	
safely.	
Recovery from a nose down attitude with power and speed close	Trained
to VNE	Consolidated
This exercise must only be done with an instructor. Fly straight	Proved
and level with cruise power. Gently lower the nose	Troved
significantly and let the speed build close the VNE. Recognise	
this unusual attitude and recover safely.	

Section 5: Solo Flying

At this stage you will have the competence to fly accurately and deal with emergency situations. The aim of this section is to build confidence to fly a Gyro on your own and consolidate all your training, within the general locality of an airfield.

Ex 5a: Presolo - check

To be assessed for readiness for a first solo

Ex 5b: First solo

To perform a first solo flight

Ex 5c: Solo consolidation

To consolidate solo flying and obtain consistency and accuracy of flying in solo circumstances

Ex 5a: Presolo - check

Objective

36

To be assessed for readiness for a first solo.

Brief

- Exercises signed off
- Air Law exam
- Different power requirements
- Take off technique
- Ballast

Specific Flying Objective	Completed
Perform take offs and landing competently and consistently	Trained
With ALL of the previous exercises signed off, perform a	Consolidated
suitable number consecutive take offs and landings flown with	
accurate circuits. At least one of the circuits must include a self	Proved
initiated go-around either due to the recognition of a possible	
unsatisfactory landing or the simulation of a runway intrusion.	

Ex 5b: First solo

Objective

To perform a first solo flight.

Brief

- Mental Attitude
- Weather Conditions

Specific Flying Objective	Completed
First solo	
Perform at least one circuit being the only occupant of the	
Gyro, landing safely. Perform go-arounds if there is any	
uncertainly in the landing.	

Ex 5c: Solo consolidation

Objective

To consolidate solo flying and obtain consistency and accuracy of flying in solo circumstances.

Brief

• Only fly according to the brief except if flight safety is compromised

Specific Flying Objective	Completed
Solo circuit consolidation	Trained
As the only occupant in the Gyro, fly accurate circuits, coming	Consolidated
to a full stop landing before each take-off.	Proved
	Proveu
Solo local area consolidation	Trained
As the only occupant in the Gyro, fly around the local area as	Consolidated
briefed previously by your instructor. Rejoin the circuit and	
land.	Proved
Solo consolidation of flying skills	Trained
As the only occupant in the Gyro, fly to a suitable area as	Consolidated
briefed by your instructor and consolidate your flying skills of	Proved
all exercises signed off to date. Pay particular attention to	
maintaining a given height and speed during an exercise and	
flying in balance and in trim. MAINTAIN A SUITABLE LOOKOUT	
AT ALL TIMES when concentrating on an exercise.	

Section 6: Advanced Flying

`Advanced flying` is about being able to understand and fly a Gyro within the majority of the range of its flight envelope. The aim of this section is to be able to fly more accurate landings, with and without power, flying at a slow and fast airspeed and flying safely at a relatively low level. It is about flying and thinking like a Gyro pilot.

ALL OF THESE EXERCISES ARE DUAL EXERCISES. These exercises may be done pre-solo as determined by your instructor, however it is good practice to consolidate these exercises after some solo work when the workload capacity of the student will be more suitable for these types of exercises.

Ex 6a: Advanced take offs

To be able to perform takeoffs in the shortest possible distance eg. when the ground surface is poor or the circuit is busy.

Ex 6b: Advanced Landings

To be able to land within close proximity to a given point, with and without power.

Ex 6c: Slow Flight

To be able to fly at the slowest speed possible without losing height.

Ex 6d: Fast Flight

To be able to fly at the fastest speed possible in a controlled and accurate manner.

Ex 6e: Zero airspeed descents

To be able to fly at a zero airspeed.

Ex 6f: Advanced Turns

To be able to turn the gyro safely at its maximum allowable bank angle.

Ex 6g: Low flying

To be able to fly the gyro accurately at low level and understand the importance and consequence of the effect of the wind, navigation and radio signals.

Ex 6h: Advanced Rotor Management

To be able to accelerate the rotors from a slow rotational speed to flying speed in a safe manner.

Ex 6a: Advanced take offs

Objective

40

To be able to perform takeoffs in the shortest possible distance eg. when the ground surface is poor or the circuit is busy.

Brief

• Technique for minimum ground distance

Specific Flying Objective	Completed
Performance Take-off, shortest ground run	Trained
Prerotate to the maximum permitted by the manufacturer and	Consolidated
after prerotation apply full power keeping the stick full back for	
as long as it is safe to do so, becoming airborne in the shortest	Proved
possible distance. As the airspeed will be lower, ensure correct	
airspeed is obtained before starting to climb out.	
Immediate departure takeoff	Trained
Prerotate at the hold point BEFORE entering the runway.	Consolidated
When ready to take off, taxy to the runway with the rotors	
spinning and start rolling as soon as the Gyro is lined up	Proved
without stopping. This is a necessary exercise when operating	
from busy airfields.	

Ex 6b: Advanced Landings

Objective

To be able to land within close proximity to a given point, with and without power.

Brief

• Technique for landing on soft/uneven ground

Specific Flying Objective	Completed
Spot landings with power	Trained
Perform a standard circuit with an aim to touchdown and stop	Consolidated
at a predetermined point on the runway. Using power to	
adjust the glideslope, maintaining a suitable speed at all times	Proved
land within 10 metres of the predetermined point.	
Spot landings without power	Trained
Perform a standard circuit with an aim to touchdown and stop	Consolidated
at a predetermined point on the runway. At a suitable point on	
the approach, chop the power and using any technique	Proved
previously taught, maintaining a suitable speed at all times land	
within 10 metres of the predetermined point. Apply power	
only in a go-around situation.	

Ex 6c: Slow Flight

Objective

To be able to fly at the slowest speed possible without losing height.

Brief

• Power curve

Specific Flying Objective	Completed
Slow flight at altitude	Trained
Fly straight and level at a safe height for this exercise.	Consolidated
Gradually reduce speed, adjusting power as required to stay	
level, and fly the aircraft at the slowest speed possible for the	Proved
Gyro without losing height. At the end of the exercise increase	
speed to a suitable cruise speed. Maintain balance at all times.	
Slow flight just above the runway - hover taxi	Trained
Fly a normal approach and continue as if to land. At a height of	Consolidated
a few feet above the runway as the speed reduces close to the	Consolidated
minimum speed possible without height loss for the Gyro,	Proved
apply power to fly along the runway a few feet above the	
ground in a hover taxi. Maintain the Gyro pointing in the	
direction of travel at all times. Land before the end of the	
runway. IT IS VITAL THAT YOU DO NOT FLY WITHIN THE `NO	
FLY` AREA OF THE HEIGHT/VELOCITY CURVE FOR THE GYRO	

Ex 6d: Fast Flight

Objective

To be able to fly at the fastest speed possible in a controlled and accurate manner.

Brief

- Control responsiveness
- Understanding Va, the fastest safe manoeuvering speed

Specific Flying Objective	Completed
Fast flight at altitude	Trained
Whilst in a normal cruise flight, increase speed close to the VNE	Consolidated
speed for the Gyro. Note the increased responsiveness. Fly for	consolidated
a few minutes at this speed performing gentle turns.	Proved

Ex 6e: Zero airspeed descents

Objective

44

To be able to fly at a zero airspeed.

Brief

- Airflow over the rudder
- Recovery technique with power
- Recovery technique without power
- Importance of not over-pitching

Specific Flying Objective	Completed
Zero airspeed descent, recovery with power	Trained
Starting from a normal cruise flying into wind, reduce power	Consolidated
close to idle and reduce speed to the minimum speed allowed	
whilst maintaining enough airflow for rudder authority.	Proved
Maintain the aircraft in balance and prevent any drift. At a	
height no less than 500ft recover by applying power. Ensure	
you are not in a nose down attitude when applying power.	
Zero airspeed descent, recovery without power	Trained
Starting from a normal cruise flying into wind, reduce power	Consolidated
close to idle and reduce speed to the minimum speed allowed	
whilst maintaining enough airflow for rudder authority.	Proved
Maintain the aircraft in balance and prevent any drift. At a	
height no less than 500ft recover by lowering the nose. When	
a suitable airspeed is obtained, level the Gyro and apply	
standard cruise power. Ensure you are not in a nose down	
attitude when applying power.	

Ex 6f: Advanced Turns

Objective

To be able to turn the gyro safely at its maximum allowable bank angle.

Brief

- Use of power in the turns
- Reminder of use of pedals and balance indicator in the turn

Specific Flying Objective	Completed
Turn around a point on the ground to the right at constant	Trained
altitude	Consolidated
In a wind of at least 10mph, fly 360 deg turns to the right	
around a point on the ground keeping a constant distance from	Proved
that point on the ground at all times and a constant altitude,	
changing the bank angle as appropriate to compensate for drift.	
Turn around a point on the ground to the left at constant altitude	Trained
In a wind of at least 10mph, fly 360 deg turns to the left around	Consolidated
a point on the ground keeping a constant distance from that	
point on the ground at all times and a constant altitude,	Proved
changing the bank angle as appropriate to compensate for	
drift.	
Figures of 8 around 2 points on the ground at constant attitude	Trained
In a wind of at least 10mph, fly figures of 8 around two points	Consolidated
on the ground about 100m apart keeping a constant distance	
from the points on the ground at all times and a constant	Proved
altitude, changing the bank angle as appropriate to	
compensate for drift.	
Figures of 8 level, then whilst turning - climb to level. Constant	Trained
speed	Consolidated
Perform figures of 8 at a constant speed and height around 2	
points approx 100metres apart. Initiate a full power climb to a	Proved
given altitude at least 400ft above the starting altitude whilst	
maintaining the figure of 8 pattern. At the end of the climb	
continue on the figure of 8 pattern at level altitude.	

Figures of Q lovel, then whilet turning descend to lovel. Constant	
Figures of 8 level, then whilst turning - descend to level. Constant	Trained
speed Perform figures of 8 at a constant speed and height around 2	Consolidated
	Proved
points approx 100metres apart. Initiate a low power descent	
to a given altitude at least 400ft below the starting altitude	
whilst maintaining the figure of 8 pattern. At the end of the	
descent continue on the figure of 8 pattern at level altitude.	
Figures of 8 climbing, then descending, then climbing. Constant	Trained
speed	Consolidated
Perform figures of 8 at a constant speed and height around 2	Droved
points approx 100metres apart. Initiate a full power climb to a	Proved
given altitude at least 400ft above the starting altitude whilst	
maintaining the figure of 8 pattern. At the end of the climb	
immediately initiate a low power descent whilst maintaining	
the figure of 8 pattern. At the end of the figure of 8 pattern	
immediately initiate a full power climb and repeat the exercise.	
Steep turns to the left	Trained
Fly at a suitable cruise height and speed. Make a 180 degree to	Consolidated
the left at a bank angle of approximately 60 degrees, using	Consolidated
increased power to maintain height. Ensure the Gyro is in	Proved
balance at all times.	
Steep turns to the right	Trained
Fly at a suitable cruise height and speed. Make a 180 degree to	
the right at a bank angle of approximately 60 degrees, using	Consolidated
increased power to maintain height. Ensure the Gyro is in	Proved
balance at all times.	
	1

Ex 6g: Low flying

Objective

To be able to fly the gyro accurately at low level and understand the importance and consequence of the effect of the wind, navigation and radio signals.

Brief

- Always know where the wind is
- Fly higher when flying downwind
- Wires/masts/cables
- Do not break Rule 5 (500ft rule)

Specific Flying Objective	Completed
Low flying at safe height and speed	Trained
Fly at a suitable safe height along a given track over the ground	Consolidated
keeping a good lookout for masts and other obstacles. Ensure	
correct balance at all times. Keep attention on the wind speed	Proved
and direction and be prepared for an engine failure at all times.	
Ensure a safe flying speed at all times.	

Ex 6h: Advanced Rotor Management

Objective

48

To be able to accelerate the rotors from a slow rotational speed to flying speed in a safe manner.

Brief

- Blade Sailing
- Consideration for the wind

Specific Flying Objective	Completed
Slow rotor buildup	Trained
From a position at the start of the runway, prerotate until the	Consolidated
rotors are turning at a relatively slow speed. Using slow	Proved
application of power and correct use of the stick use airflow to	Floveu
increase the rotor RPM to flying speed. Be particularly aware	
of blade sailing at all times. The initial rotor RPM should be at	
the lowest level which allows rotor speed to be increased	
without the use of the prerotator.	

Section 7: Cross country flying

Up until this point, the majority of your training will be in close proximity of the training airfield. `Cross Country Flying` is about flying between airfields without getting lost and safely flying in different classes of airspace, with consideration for other air traffic. The aim of this section is to give you the skills and confidence to tour with your Gyro.

Ex 7a: Join the circuit at unfamiliar airfields

To be able to join the circuit an airfield conforming to the circuit pattern and with consideration for other traffic.

Ex 7b: Precautionary Field landings

To be able to correctly select an appropriate field for landing and approach this field for landing.

Ex 7c: Emergency field landing

To be able to land in a field in the event of an engine failure.

Ex 7d: Navigation

To be able to safely navigate between two airfields without losing knowledge of the current position and land at different airfield.

Ex 7e: Qualifying Cross country

To perform the required cross country solo navigation exercises.

Ex 7a: Join the circuit at unfamiliar airfields

Objective

To be able to join the circuit an airfield conforming to the circuit pattern and with consideration for other traffic.

Brief

- Setting QFE on the Altimeter
- Downwind checks
- Radio calls

Specific Flying Objective	Completed
Joining overhead	Trained
From an exercise away from an airfield, return to an airfield correctly joining overhead, descending deadside and crosswind	Consolidated
taking into account other traffic in the area. Perform	Proved
downwind checks and check final.	
Joining downwind / base leg	Trained
From an exercise away from an airfield, join on the downwind leg taking account of other traffic in the area. Perform correct	Consolidated
downwind checks and check final. Repeat the exercise joining	Proved
on the base leg.	

Ex 7b: Precautionary Field landings

Objective

To be able to correctly select an appropriate field for landing and approach this field for landing.

Brief

- Selection of field
- Slope/Surface/Surround/Size/Shape/Stock

Specific Flying Objective	Completed
Precautionary field landing	Trained
From a general cruise speed and height select a suitable field	Consolidated
for landing. Ensure there are no wires or obstructions in the	
vicinity of the field, perform a number of passes over the field	Proved
to check the field's suitability for landing. Approach the field	
and land if you have permission, otherwise perform a go-	
around at an appropriate height.	

Ex 7c: Emergency field landing

Objective

To be able to land in a field in the event of an engine failure.

Brief

- Minimum speed for landing
- Minimum height for final approach

Specific Flying Objectives

Specific Flying Objective	Completed
Idle power flying, best range speed	Trained
Fly to be directly above a specific point on the ground at a specific speed flying into wind. Chop the power and fly at a	Consolidated
constant speed. From the descent angle agree with your	Proved
instructor the point at which you would be starting the	
roundout. Repeat the exercise at a number of different	
speeds. Work out the speed which will give you the best range	
for the current configuration of Gyro.	
Emergency field landing	Trained
From a height above the ground of at least 1000 ft, chop the engine power to idle. Select a suitable field for landing and fly	Consolidated
an approach to land approximately 1/3 of the way into the	Proved
field. Go around at a suitable height. This exercise is about	
setting up a correct approach.	

This document may be printed by an instructor for the instructors use or by a student for their own personal use. It must not be printed and sold. Printed copies are available from the British Rotorcraft Association.

Ex 7d: Navigation

Objective

To be able to safely navigate between two airfields without losing knowledge of the current position and land at different airfield.

Brief

- Navigation exam
- Meteorology exam
- Human Performance and Limitations exam
- Preflight planning
- Destination airfield planning
- Enroute planning
- NOTAMS
- Obtaining and interpreting weather forcasts
- Use of the UK AIP and flight guides

Specific Flying Objective	Completed
Enroute navigation	Trained
Plan and fly a route between a number of cross country turning	Consolidated
points without getting lost and without the aid of a GPS unit.	
You should fly this exercise over unfamiliar territory. This	Proved
exercise can be flown dual or solo.	
Unfamiliar airfield circuits joins	Trained
Plan and fly to an unfamiliar airfield correctly joining the circuit	Consolidated
and land. If the airfield uses radio you must give appropriate	
radio calls. Obtain prior permission for landing (PPR) before	Proved
flying. This exercise can be flown dual or solo.	
Landing and take off on alternative surface	Trained
Fly and land on a different landing surface from the one that	Consolidated
you have used for your training. If you are used to grass, this	
exercise must be to a runway with a tarmac surface. If you are	Proved
used to tarmac, this exercise must be to a runway with a grass	
surface. This exercise can be flown dual or solo.	
Solo Cross country navigation	Trained
Practice navigation in unfamiliar territory whilst solo.	Consolidated
	Proved

Ex 7e: Qualifying Cross country

Objective

To perform the required cross country solo navigation exercises.

Brief

- Getting a Qualifying Cross Country form signed
- If you land in a field do not take off again
- Contact instructor on landing

Specific Flying Objective	Completed
Qualifying Cross Country No 1	
Solo navigation with a landing at an airfield not less than 25 nm	
from the home airfield.	
Qualifying Cross Country No 2	
Solo navigation with a landing at an airfield not less than 25 nm	
from the airfield used for take off and different from the	
airfield and/or route in the first qualifying flight. This does not	
have to be a separate flight but can be an extension of	
Qualifying Cross Country No 1.	

Section 8: General flying test

The `General Flying Test` is a flying exam, conducted by a CAA approved examiner to demonstrate safe handling of a Gyro. The aim of this test is to prove your competence at flying so that you will be entitled to the privilege to carry friends and family as passengers.

Ex 8a: Pre-GFT check

To prepare for the general flying test

Ex 8b: General Flying Test

To show an examiner that you are safe and competent at flying a gyro and responsible to carry passengers.

Ex 8a: Pre-GFT check

Objective

56

To prepare for the general flying test.

Brief

- Nothing in the exercise should be new
- Accuracy of flying is very important

Specific Flying Objective	Completed
Flying Skills Check	Trained
To repeat all the exercises signed off in this syllabus in	Consolidated
preparation for the General Flying test.	
	Proved
Gyro daily inspection check	Trained
Perform the routine daily inspection check of the Gyro, ideally	Consolidated
using a checklist. Be able to answer questions on the	Proved
components of a Gyro and possible component failures that	Tioved
may occur.	
Performance considerations for the type of Gyro	Trained
Answer questions relating to the type of Gyro being used for	Consolidated
the test. Specifically weights and payloads, fuel weight and	
consumptions and min/max speeds, especially in turbulence.	Proved
Passenger safety brief	Trained
Perform a safety brief for passengers. In particular exiting the	Consolidated
Gyro in an emergency.	
	Proved

Ex 8b: General Flying Test

Objective

To show an examiner that you are safe and competent at flying a gyro and responsible to carry passengers.

Brief

- Daily Inspection
- Performance Considerations for Gyro type
- Selection of exercises for the skills test
- Passenger Safety Brief
- Nothing in the test should be new

Specific Flying Objective	Completed
Gyro daily inspection check	
Performance considerations for the type of Gyro	
Passenger safety brief	
Starting procedure : running up	
Taxying	
Take-off and landing	
Straight and level flying at pre-determined power settings and	
airspeeds, including at the lowest possible speed to maintain	
level flight	
Climbing and descending turns	
Recovery at a safe altitude from a point where forward speed	
has been reduced below the minimum speed for the	
maintenance of level flight by application of power	
as above but recovery without application of power	
Go-around from a baulked approach	
Flight into and out of a restricted landing area, the landing to	
achieve the lowest possible touch-down speed consistent with	
safety	
A power-off approach and landing, to touch down as near as	
possible to a selected point	
Shut down procedure	

The PPL(G) Syllabus 2009 Edition

Part 2 - The Theory Elements

This document may be printed by an instructor for the instructors use or by a student for their own personal use. It must not be printed and sold. Printed copies are available from the British Rotorcraft Association.

The PPL(G) Syllabus - The Theory Elements

Airfield Procedures

Every airfield should have their own local procedures. This section lists what procedures should be in place. For the safety of yourself and others, ensure that you have made yourself familiar with all these items during the early part of your training. There is no written examination for this topic.

Aviation Law, Flight Rules and Procedures

There are `rules of the air` for flying in the same way that there is a `highway code` for driving. Some of this relates to collision avoidance of other aircraft, all of it relates to your legal obligations as a pilot and the rules must be obeyed by law.

Gyroplane Technical

Understanding the terminology associated with Gyro flying should be important to every Gyro pilot. It is vital that you have a basic understanding of how and why a Gyro flies, as this will give you some element of knowledge in the event that something goes wrong whilst you are flying.

Meteorology

The weather plays a major role in flying. Weather is predictable and it is vital that, as a pilot, you can predict what is likely to happen during the course of your flight. Understanding the weather is a significant safety factor in flying.

Human Performance and Limitations

As a pilot, you have limitations. If you fly when you are outside these limitations there is a high chance of danger to you and your passengers. It is vital that you know about these limitations, recognise your own personal limitations and only fly within these limitations.

Navigation

60

Much of the fun of Gyros is visiting other places and other airfields. It is essential that you can navigate whilst in the air, both to avoid getting lost, but also to avoid putting yourself, your passengers and other aircraft in danger.

Airfield Procedures

Every airfield should have their own local procedures. This section lists what procedures should be in place. For the safety of yourself and others, ensure that you have made yourself familiar with all these items during the early part of your training. There is no written examination for this topic.

Airfield Procedures

- Standing Orders
- Booking In/Out
- Windsock
- Signals Square
- Manoeuvring areas

Safety

- Fire Extinguishers location
- First Aid Kit location
- Telephone location
- Fuel Storage suitable containers
- Smoking nowhere near buildings or aircraft
- What to do in the event of an accident
- Refuelling
- Safety of onlookers

Flight Authorisation

- Preflight planning
- Aircraft documentation service checks
- Certificate of Maintenance
- Air Traffic Units
- Personal Equipment (phone)
- Booking out
- Solo authorisation by instructor
- Daily Inspection

After flight

- Booking In
- Reporting Defects
- Personal Flying Logbooks
- Aircraft logbooks

Aviation Law, Flight Rules and Procedures

There are `rules of the air` for flying in the same way that there is a `highway code` for driving. Some of this relates to collision avoidance of other aircraft, all of it relates to your legal obligations as a pilot and the rules must be obeyed by law.

Aircraft Documents

- Registration Certificate
- Permit to fly
- Engine/Airframe/Prop Logbook
- Pilot operators handbook
- Maintenance Schedule
- Certificate of Maintenance
- Insurance Requirements

Aircraft Permit

- Limitations
- Revalidation
- Before flight checks
- Modifications

Personnel Licencing

- Privileges of a licence
- Revalidation period
- Medical requirements
- 90 day rule

Signalling

- Signals Square
- Marshaller Signals
- Light Signals

Flying Restrictions

- Charity
- Performing at an event
- Rule 5
- Events with more than 1000 people
- VFR Rules

Collision Avoidance

- Feature following
- Who has right of way in the air
- Who has right of way on landings

• Who has priority (different types of aircraft)

Flying

- Reportable accidents
- Alcohol limits
- When to use QFE/QNH/Flight Levels
- Danger Areas and restricted areas

Gyroplane Technical

Understanding the terminology associated with Gyro flying should be important to every Gyro pilot. It is vital that you have a basic understanding of how and why a Gyro flies, as this will give you some element of knowledge in the event that something goes wrong whilst you are flying.

Components of a Gyro

- Rotor
- Hub Bar
- Teeter Tower
- Teeter Block
- Teeter Bolt
- Roll Bolt
- Pitch Bolt
- Teeter Stops
- Mast
- Trim Spring
- Keel
- Main Wheels
- Nose Wheel
- Main Wheel Spar
- Empennage
- Rudder
- Horizontal Stabilser
- Vertical Stabiliser
- Nacelle
- Prerotator Gear
- Bendix Gear
- Prerotator Shaft

Controls

- How the stick works
- How the pedals work
- How the throttle works

Instruments

- ASI
- Altimeter
- Rotor RPM Gauge
- Engine RPM Gauge

64

- Oil Pressure
- Engine Temperate
- Engine Exhaust Gas Temperature

Electrical System

- Magnetos
- Master Switch
- Lights

Engine

- Fuel
- Oil
- Carb Icing

The forces acting on a Gyro

• Lift, weight, thrust and Drag

The rotor system

- Components of a rotor
- Autorotation and the forces on a rotor
- Disk loading on rotor rpm
- Dissymmetry of lift
- Flapping to Equality
- Reverse Flow
- Retreating blade stall
- Reducing stress on rotors

Stability

- The function of the empennage
- The need for pedal pressure when increasing power
- Centre of gravity calculation
- Propeller thrust and stability
- Rotor thrust and stability

Safety

- Height / Velocity diagram
- The Hang check

Meteorology

The weather plays a major role in flying. Weather is predictable and it is vital that, as a pilot, you can predict what is likely to happen during the course of your flight. Understanding the weather is a significant safety factor in flying.

Air Density

- What is air density
- How air density affects Gyro flying performance
- Factors affecting air density

ISA Definitions

- Pressure changes with height
- Temperature changes with height
- Lapse rates and stability
- Temperature Inversion

Air masses

- Air masses in the northern hemisphere
- Weather characteristics in air masses

Understanding synoptic charts

- Isobars
- Working out the wind direction from synoptic charts
- Warm fronts
- Cold fronts
- Occluded fronts

Wind

- Changes with height
- Wind gradient
- Turbulence over obstacles
- Wake Turbulence

Wind and hills

- Rotor turbulence
- Wave
- Orographic fog / cloud

Convection

- Sea Breeze
- Thermals
- Katabatic winds

66

• Anabatic winds

Fog

- Dew point
- Radiation fog
- Advection fog

Icing

- Different types of icing
- Factors affecting icing
- Consequences of icing on a Gyro

Cloud types

- Safe flying cloud types
- Clouds to be avoided
- Calculation of cloud base
- Rain & Squalls

Thunderstorms

- Conditions that cause thunderstorms
- How can you see thunderstorms approaching
- How far should you stay away from thunderstorms

Obtaining weather information

- TAFS
- METARS
- AIRMET
- 214
- 215
- When can you contact the met office

Flight planning and the weather

• Flying into weather

Human Performance and Limitations

As a pilot, you have limitations. If you fly when you are outside these limitations there is a high chance of danger to you and your passengers. It is vital that you know about these limitations, recognise your own personal limitations and only fly within these limitations.

Нурохіа

- Oxygen
- Signs and symptoms
- When it takes effect
- The effect of smoking

Hyperventilation

- Signs and symptoms
- Differences from Hypoxia

Flying with colds and flu

• What it effects

Scuba Diving

- The effects of decompression
- Recommended times between diving and flying

Stress

• Effects of stress on flying

Alcohol

- Effects of alcohol
- Elimination time
- Allowable volume

Lookout

- How to scan the horizon
- Collision times from flying speeds
- Flying with instructors / experience pilots

Air sickness

- Recognising the symptoms
- Medication
- Sickness in the air

IMSAFE

• Fit for flying

Navigation

Much of the fun of Gyros is visiting other places and other airfields. It is essential that you can navigate whilst in the air, both to avoid getting lost, but also to avoid putting yourself, your passengers and other aircraft in danger.

Reading aeronautical charts

- Understanding the 1/4mil map
- Understanding the 1/2mil map
- Limitations of maps
- Classification of airspace
- Danger and Restricted areas
- MATZ Transits
- Recognisable features

The route plan

- Working out a sensible route
- The route plan document
- Marking up a map
- Safety Altitude
- Flying speed

Calculating headings

- Using the whizz wheel
- Triangle of velocities
- Magnetic Variation and Isogonals
- Compass Deviation

Preparation for flight

- Fuel Consumption
- PPR
- Radio Frequencies

During flight

- Setting QFE / QNH
- Regional Pressure Settings
- Reading a map in flight

Certificate of Completion

Name of Student: Date of birth: Address:

The above student has been trained on all the elements of this syllabus.

The above student has had time and opportunity to consolidate this training and feels confident that he/she understands all of the exercises.

After the period of consolidation, all of the specific flying objectives have been demonstrated to the standard given in this syllabus.

Instructor

Name Signed Date

Licence No

Student

Signed

Date

71